Diaquo-2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12,3,1]octadeca-1(18),2,12,14,16pentaeneiron(II) Chloride Perchlorate

By Michael G. B. Drew and A.Hamid bin Othman
Department of Chemistry, The University, Whiteknights, Reading RG6 2AD, England
and Paul McIlroy and S. Martin Nelson
Department of Chemistry, Queen's University, Belfast BT9 5AG, Northern Ireland

(Received 7 July 1975; accepted 19 August 1975)

Abstract

$\mathrm{Fe}\left(\mathrm{N}_{5} \mathrm{C}_{15} \mathrm{H}_{23}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl} . \mathrm{ClO}_{4}, M=532 \cdot 15$, monoclinic, $a=7.872$ (8), $b=27 \cdot 761$ (15), $c=10 \cdot 920$ (9) \AA, $\beta=113.6(1)^{\circ}, U=2191 \cdot 2 \AA^{3}, Z=4, d_{c}=1 \cdot 52, d_{m}=1.51$ (2), Mo $K \alpha$ radiation $\lambda=0.7107 \AA, \mu=9.38 \mathrm{~cm}^{-1}$. Space group $I 2 / a$ [equivalent positions (000) $\left(\frac{11}{22} \frac{1}{2}\right) \pm\left(x, y, z ; \frac{1}{2}-x, \frac{1}{2}+y,-z\right)$] from systematic absences $h k l, h+k+l=2 n+1 ; h 0 l, h=2 n+1$ and the successful structure determination. The cation has crystallographically imposed C_{2} symmetry with the Fe atom in a distorted pentagonal bipyramidal environment. The five N atoms of the macrocycle form the pentagonal girdle [Fe- N 2.256 (7), 2.262 (6), 2.220 (7) \AA] and the water molecules occupy the axial positions [$\mathrm{Fe}-\mathrm{O} 2 \cdot 218$ (7) \AA]. The perchlorate anion is disordered. 1285 independent reflexions, above background, measured by counter methods have been refined to $R 0.073$.

Introduction

A crystal with dimensions $0.25 \times 0.35 \times 0.40 \mathrm{~mm}$ was mounted with the c^{*} axis parallel to the instrument axis of a General Electric XRD5 apparatus which was used to measure diffraction intensities and cell dimensions. It was equipped with a manual goniostat, scintillation counter and pulse-height discriminator. Zirconium-filtered X-radiation was used. 2079 independent reflexions with $2 \theta<50^{\circ}$ were measured by the stationary-counter stationary-crystal method. No crystal decay was observed during the measurement of data. 1285 reflexions with $I>\sigma(I)$ were used in subsequent calculations. No extinction or absorption corrections were applied. The positions of the Fe atoms were determined from a Patterson function and Fourier syntheses were used to determine the positions of the remaining atoms. The positions of the non-methyl H atoms bonded to C, N and O were located from the difference Fourier map and/or calculated in tetrahedral or trigonal positions. These atoms were included in the structure factor calculation but not refined. The perchlorate anion was disordered in a complicated fashion which we approximated by taking two sets of tetrahedral positions for the O atoms with $\frac{1}{2}$ occupancy. The structure was refined by full-matrix least squares, all non-hydrogen atoms anisotropically except the oxygen atoms of the perchlorate which were refined isotropically to $R 0.073$. The weighting scheme, chosen to give average values of $w \Delta^{2}$ for groups of reflexions independent of values of F_{o} and $\sin \theta / \lambda$, was $\downarrow w=1$ for $F_{o}>35$ and $\sqrt{ } w=35 / F_{o}$ for $F_{o}<35$. Calculations were made on a C.D.C. computer at the University of London Computer Centre using the X-RAY set of programs (Stewart, 1970). Atomic scattering factors
were taken from International Tables for X-ray Crystallography (1974). The anisotropic temperature factor is defined as $\exp \left[-0 \cdot 25 \pi^{2} \sum_{i} \sum_{j} h_{i} h_{j} b_{i} b_{j} U_{i j}(i, j=\right.$

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ with estimated standard deviations in parentheses

	x	y	z
Fe	0^{*}	$1150(4)$	2500^{*}
$\mathrm{O}(1)$	$1682(8)$	$1153(2)$	$1286(5)$
$\mathrm{N}(3)$	$-1657(11)$	$506(2)$	$1398(8)$
$\mathrm{C}(4)$	$-2524(15)$	$606(3)$	$-61(10)$
$\mathrm{C}(5)$	$-3546(13)$	$1069(4)$	$-260(10)$
$\mathrm{N}(6)$	$-2335(9)$	$1436(2)$	$649(6)$
$\mathrm{C}(7)$	$-2598(11)$	$1880(3)$	$437(8)$
$\mathrm{C}(8)$	$-1269(10)$	$2188(3)$	$1487(7)$
$\mathrm{N}(9)$	0^{*}	$1950(2)$	2500^{*}
$\mathrm{C}(17)$	$-523(18)$	$68(3)$	$1763(12)$
$\mathrm{C}(20)$	$-4125(14)$	$2103(4)$	$-789(10)$
$\mathrm{C}(21)$	$-1308(13)$	$2692(3)$	$1462(9)$
$\mathrm{C}(22)$	0^{*}	$2937(4)$	2500^{*}
$\mathrm{Cl}(1)$	5000^{*}	$467(1)$	2500^{*}
$\mathrm{Cl}(2)$	0^{*}	$1492(1)$	7500^{*}
$\mathrm{O}(21)$	$1399(54)$	$1139(13)$	$7679(48)$
$\mathrm{O}(22)$	$-379(40)$	$1663(10)$	$8542(32)$
$\mathrm{O}(23)$	$-1210(37)$	$1300(9)$	$6352(27)$
$\mathrm{O}(24)$	$1342(30)$	$1856(8)$	$7440(24)$
$\mathrm{H}(31) \dagger$	-2547	484	1749
$\mathrm{H}(41)$	-1409	651	-3388
$\mathrm{H}(42)$	-3317	293	-507
$\mathrm{H}(51)$	-4226	1151	-1284
$\mathrm{H}(52)$	-4786	994	77
$\mathrm{H}(171)$	379	51	1214
$\mathrm{H}(172)$	-1473	-246	1413
$\mathrm{H}(21)$	-2397	2889	636
$\mathrm{H}(22)$	0	3322	2500
$\mathrm{H}(11)$	2917	1000	1500
$\mathrm{H}(12)$	888	1014	455

* Parameter fixed.
\dagger Hydrogen atom parameters were fixed. The atoms were given thermal parameters equivalent to those of the atoms to which they were bonded.
$1,2,3)]$ where b_{i} is the i th reciprocal cell dimension. The isotropic thermal parameter is $\exp \left(-8 \pi^{2} U \sin ^{2} \theta / \lambda^{2}\right)$. The 794 zero reflexions showed no large discrepancies. In the final cycle of refinement, all shifts were $<0.020 \sigma$. The final list of positions is given in Table 1, thermal parameters in Table 2, bond lengths and angles in Table 3.*

Table 2. Anisotropic thermal parameters $\left(\times 10^{3}\right)$ with estimated standard deviations in parentheses

	$U_{11} *$	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Fe	$51(1)$	$36(1)$	$45(1)$	$0 \dagger$	$24(1)$	$0 \dagger$
$\mathrm{O}(1)$	$78(4)$	$69(3)$	$63(3)$	$0(3)$	$39(3)$	$9(3)$
$\mathrm{N}(3)$	$93(5)$	$59(4)$	$103(6)$	$-14(4)$	$66(5)$	$-22(4)$
$\mathrm{C}(4)$	$101(8)$	$81(6)$	$82(7)$	$-39(6)$	$43(6)$	$-38(6)$
$\mathrm{C}(5)$	$70(6)$	$113(10)$	$65(6)$	$-20(6)$	$7(5)$	$-31(5)$
$\mathrm{N}(6)$	$62(4)$	$76(5)$	$46(3)$	$-4(3)$	$18(3)$	$-7(4)$
$\mathrm{C}(7)$	$61(4)$	$72(5)$	$47(5)$	$18(3)$	$26(4)$	$10(4)$
$\mathrm{C}(8)$	$55(4)$	$55(4)$	$50(4)$	$13(3)$	$27(3)$	$12(3)$
$\mathrm{N}(9)$	$60(4)$	$40(4)$	$47(5)$	$0 \dagger$	$34(4)$	$0 \dagger$
$\mathrm{C}(17)$	$138(10)$	$47(5)$	$151(10)$	$-14(5)$	$100(10)$	$-22(4)$
$\mathrm{C}(20)$	$76(6)$	$153(10)$	$65(6)$	$35(7)$	$19(5)$	$43(6)$
$\mathrm{C}(21)$	$93(6)$	$53(5)$	$87(6)$	$19(4)$	$60(6)$	$22(4)$
$\mathrm{C}(22)$	$119(12)$	$39(6)$	$123(13)$	$0 \dagger$	$78(11)$	$0 \dagger$
$\mathrm{C}(1)$	$57(2)$	$88(2)$	$95(2)$	$0 \dagger$	$20(1)$	$0 \dagger$
$\mathrm{Cl}(2)$	$85(2)$	$58(2)$	$46(2)$	$0 \dagger$	$40(2)$	$0 \dagger$

* Isotropic parameters for $\mathrm{O}(21), \mathrm{O}(22), \mathrm{O}(23), \mathrm{O}(24)$ are 256 (17), 190 (10), 164 (8), 144 (7).
\dagger Parameter fixed.

Discussion

The analysis of the title compound, $\left[\mathrm{Fe} B\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} \mathrm{Cl}^{-}$, ClO_{4}^{-}was carried out as part of the studies (Drew, Othman, Hill, McIlroy \& Nelson, 1975; Drew, Othman, McIlroy \& Nelson, 1976a,b) of seven-coordination in metal complexes of pentadentate macrocyclic ligands. Crystal structures have been determined for

[^0]four molecules in this series, namely, $\mathrm{Fe} B(\mathrm{NCS})_{2}$, $\mathrm{Fe} C(\mathrm{NCS})_{2}$ (Drew, Othman, Hill, McIlroy \& Nelson, 1975; Drew et al., 1976b) and $\left[\mathrm{Fe} B(\mathrm{NCS})_{2}\right]^{+} \mathrm{ClO}_{4}^{-}$and $\left[\mathrm{FeC}(\mathrm{NCS})_{2}\right]^{+} \mathrm{ClO}_{4}^{-}$(Drew et al., 1976a).

$B, n=2$
C, $n=3$
The structure of $\left[\mathrm{Fe} B\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} \mathrm{Cl}^{-}, \mathrm{ClO}_{4}^{-}$was determined in order to ascertain what effect, if any, a change in the nature of the anionic axial ligands might have upon the molecular geometry. The compound was prepared by dithionite reduction in the presence of an excess of sodium chloride, of the iron(III) complex $\left[\mathrm{Fe} B(\mathrm{NCS})_{2}\right]^{2+} \mathrm{ClO}_{4}^{-}$in aqueous solution. The royal

Fig. 1. The cation $\left[\mathrm{Fe} B\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$.

Fig. 2. The unit cell in the c projection. Oxygen atoms in the perchlorate ion are omitted for clarity.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

	$2 \cdot 218$ (7)
N(3)	$2 \cdot 256$ (7)
$\mathrm{Fe}-\mathrm{N}(6)$	$2 \cdot 262$ (6)
$\mathrm{Fe}-\mathrm{N}(9)$	$2 \cdot 220$ (7)
$\mathrm{N}(3)-\mathrm{C}(4)$	$1 \cdot 486$ (13)
C(5)	$1 \cdot 485$ (15)
$\mathrm{C}(5)-\mathrm{N}(6)$	$1 \cdot 475$ (11)
N(6)--C(7)	$1 \cdot 255$ (11)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 477$ (10)
$\mathrm{C}(7)-\mathrm{C}(20)$	$1 \cdot 527$ (12)
$\mathrm{C}(8)-\mathrm{C}(21)$	$1 \cdot 398$ (11)
$\mathrm{C}(8)-\mathrm{N}(9)$	1.332 (7)
$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 368$ (10)
N(3)--C(17)	$1 \cdot 466$ (12)
$\mathrm{C}(17)-\mathrm{C}\left(17^{1}\right)$	(16)
(2) $-\mathrm{O}(21)$	1.43 (4)
$\mathrm{Cl}(2)-\mathrm{O}(22)$	$1 \cdot 37$ (4)
$\mathrm{Cl}(2)-\mathrm{O}(23)$	1.34 (2)
$\mathrm{Cl}(2)-\mathrm{O}(24)$	$1 \cdot 48$ (2)
$\mathrm{O}(21)-\mathrm{Cl}(2)-$	(22) 122
$\mathrm{O}(21)-\mathrm{Cl}(2)-\mathrm{O}$	(23) 94
$\mathrm{O}(21)-\mathrm{Cl}(2)-\mathrm{O}$	(24) 87
$\mathrm{O}(22)-\mathrm{Cl}(2)-\mathrm{O}$	(23) 127
$\mathrm{O}(22)-\mathrm{Cl}(2)-\mathrm{O}$	(24) 101 (2)
$\mathrm{O}(23)-\mathrm{Cl}(2)-\mathrm{O}$	(24) 119

there are differences in the deviations of the C atoms from the FeN_{5} plane in that (inter alia) in $\left[\mathrm{Fe} B\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$, $\mathrm{C}(22)$ is perforce on the plane but in $\mathrm{Fe} B(\mathrm{NCS})_{2}$ this atom is $0.28 \AA$ away. It may well be that the thiocyanate groups in the latter structure affect the relative position of the pyridine ring. The $\mathrm{Fe}, \mathrm{N}(3), \mathrm{C}(4), \mathrm{C}(5)$, $\mathrm{N}(6)$ ring has the asymmetric puckered conformation with $\mathrm{C}(4) 0.68$ and $\mathrm{C}(5) 0.07 \AA$ from the FeN_{2} plane. By contrast, the $\mathrm{Fe}, \mathrm{N}(3), \mathrm{C}(17), \mathrm{C}\left(17^{1}\right), \mathrm{N}\left(3^{1}\right)$ ring has the symmetric puckered conformation in that $\mathrm{C}(17)$ and $\mathrm{C}\left(17^{1}\right)$ are $\pm 0.37 \AA$ from the plane of FeN_{2}. ${ }^{*}$

Bond lengths in $\left[\mathrm{Fe} B\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+} \mathrm{Cl}^{-}, \mathrm{ClO}_{4}^{-}$are similar to those in $\mathrm{Fe} B(\mathrm{NCS})_{2} ; \mathrm{Fe}-\mathrm{N}(9)$ is the shortest bond at 2.220 (7) \AA and the other four are equivalent $2 \cdot 256$ (7), $2 \cdot 262$ (6) \AA. There is little difference between $\mathrm{Fe}(\mathrm{II})-\mathrm{N}$ and $\mathrm{Fe}(\mathrm{III})-\mathrm{N}$ bond lengths in complexes formed with macrocycle B suggesting that the size of the cation has little effect on the bond lengths. There is a much wider range of $\mathrm{Fe}-\mathrm{N}$ lengths in complexes of macrocycle C presumably due to the greater steric strain set up by the six-membered ring. For the present complex the inclusion of the axial $\mathrm{H}_{2} \mathrm{O}$ groups instead of the pseudohalide -NCS groups has made little difference in the amount of distortion in the macrocycle.

The $\mathrm{Fe}-\mathrm{O}$ bond lengths of 2.218 (7) \AA are longer than the axial bond found in another pentagonal bipyramidal structure, that of the chloroaquo-(2,6diacetylpyridine)bis(semicarbazone)iron(II) cation ($2 \cdot 153 \AA$, Wester \& Palenik, 1973). The chloride ion is hydrogen bonded to the axial oxygen via $\mathrm{H}(11)$ $\left[\mathrm{Cl}(1) \cdots \mathrm{H}(11) \quad 2 \cdot 15 \AA, \quad \mathrm{O}(1)-\mathrm{H}(11) \cdots \mathrm{Cl} \quad 151 \cdot 9^{\circ}\right]$. There are no intermolecular contacts significantly less than the sum of van der Waals radii. The unit cell is shown in the c projection in Fig. 2.

We are grateful to A. W. Johans for his assistance in the crystallographic investigations and to the National University of Malaysia and the Department of Education of N. Ireland for support grants (A. H. O. and P. McI.).

* As expected, atoms $\mathrm{Fe}, \mathrm{N}(6), \mathrm{C}(7), \mathrm{C}(8), \mathrm{N}(9), \mathrm{C}(20)$, $\mathrm{C}(21), \mathrm{C}(22)$ are coplanar within experimental error.

References

Drew, M. G. B., Othman, A. H., Hill, W. E., McIlroy, P. \& Nelson, S. M. (1975). Inorg. Chim. Acta, 12, L25-L26.
Drew, M. G. B., Othman, A. H., McIlroy, P. \& Nelson, S. M. (1976a). J. Chem. Soc. Dalton. In the press.

Drew, M. G. B., Othman, A. H., McIlroy, P. \& Nelson, S. M. (1976b). J. Chem. Soc. Dalton. In the press.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Stewart, J. M. (1972). X-RAY system of programs, Univ. of Maryland Tech. Rep. TR-192.
Wester, D. \& Palenik, G. J. (1973). J. Amer. Chem. Soc. 95, 6505-6506.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31350 (6pp). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England

